Guidance, Navigation and Controls Subsystem

Winter 1999 Semester Review

- Team Overview (Greg Chatel)
- Attitude Determination (David Faulkner)
- Attitude Control (Brian Shucker)
- Simulations (Barry Goeree)

Team Members

Team Mentor:

- Dr. Fasse (AME)
- **Team Members**:
- Matt Angiulo (AME)
 Steve Hoell (Phys)
- David Faulkner (AME) Martin Lebl (CSC)
- Marc Geuzebroek (Phys)•
- James Harader (AME)
 Daniel Stone (AME)

- Marissa Herron (AME)
- Greg Chatel (AME)
 Brian Ibbotson (AME)

 - Adam Mahan (ECE)
- Barry Goeree (AME)
 Brian Shucker (Phys/Math)

Guidance, Navigation, and Controls Attitude Estimation Sensors

- GPS
- Magnetometer
- Sun Sensor
- Horizon Sensor
- Star Tracker
- Integrating Rate Gyro

Attitude Control Simulation

- What is simulated?
 - Torques acting on satellite determine how attitude changes with time. These equations of motion are integrated in time.
 - This is different then what STK does!
- What are we trying to achieve?
 - Obtain accurate estimates for important design parameters like max torque and momentum storage.
 - Analysis and verification of control and attitude estimation algorithms.

Attitude Control Simulation

- What's included in the simulation?
 - aerodynamic drag torques
 - magnetic field models
 - sun sensor model
 - dynamics of satellite, orbital kinematics
 - control algorithms
 - simple visualization
 - kinematics of ground station tracking

Attitude Control Simulation

- What needs to be done?
 - solar pressure
 - gravity gradient
 - attitude estimation algorithms
 - models of all other sensors (magnetometer, horizon sensor)
 - continue work on control algorithms
 - kinematics of other control modes
 - more realistic visualizations

Attitude Control Devices

- Dynacon Mini Reaction Wheels
 - Size:
 - Power:
 - Optional integrated rate sensor:
 - Angular Momentum Capacity:

80 x 80 x 100 mm 2.5 W ea @ 2000 RPM 1 W 0.3 N-m-s

- Student Designed Torque Rods
 - lost our Space Grant student
 - found a detailed paper on designing torque rods

