Science Team Semester Review Spring 1998

Jim Collins, Science Team Leader

SCIENCE OBJECTIVES Lightning Experiment

- Primary Mission: Improve Understanding of:
 - Thunderstorm Distributions
 - **Cloud Processes**
 - Storm Variability
- To Achieve Mission: Detect and Locate Lightning Activity Over Large Areas of the Earth's Surface.
 - Cloud to Ground
 - Cloud to Cloud
 - Intra-Cloud
- Ground-based Techniques Detect Only Cloud-to-Ground
- Obtain Data to Constrain Theoretical Models Global Climate Models Global Warming Models Theoretical Algorithms Which Describe the Electrical, Microphysical, and Kinematic Properties of Tropical Thunderstorms.
- Locate Areas of Atmospheric Deep Convection

SCIENCE OBJECTIVES Sprite Experiment

- Good Public Relations (Pretty Pictures)
- Constrain Atmospheric Chemistry and Space Physics Models
- Investigate Correlations Between: Sprite Production Over Land vs. Ocean Frequency of Sprites (Relative to Cloud Flashes) vs. Latitude, Season, Storm Intensity Frequency of Sprites vs. Cloud-to-Ground Strikes
- Determine If Sprites Can Occur Over Single Thunderstorm Cells As Opposed to Mesoscale Convective Systems.

SCIENCE OBJECTIVES Photometry Experiment

- Improve Accuracy of Ground-Based Measurements of UBVRI Colors for a Selected Set of Standard Stars
- Obtain and Publish an Internally Consistent Data Set Spanning a Range of Magnitudes and Spanning the Northern and Southern Hemisphere
- Possible Search for Extra-Solar Planets through Investigation of Micro-Magnitude variability.

PROGRESS - CLARIFICATION OF SCIENCE OBJECTIVES Lightning Experiment

Supplement LIS, OTD Data Set -- Test Hypotheses For:

- Extreme Ratio of In-Cloud Lightning to Ground Strokes in Severe Storms Including Tornadic Storm
- Relationship Between Lightning and Graupel/Hail Production
- Non-linear Relation Between Cloud Height and Lightning Rates
- Coordinate with Gamma Ray Observatory Observations of Unexplained Terrestrial Gamma Ray Bursts (Sprite Detection May Correlate)

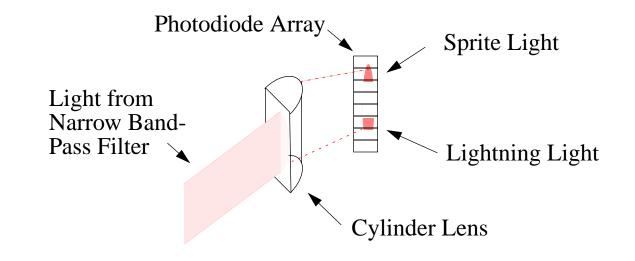
PROGRESS - CLARIFICATION OF SCIENCE OBJECTIVES Sprite Experiment

• Investigate Temporal Characteristics of Sprites

- Supplement Data from Midcourse Space Experiment (MSX) Mission (Dr. David Pollock at University of Alabama in Huntsville): UV and IR Sensors May Provide Information On:
 - -- Various Chemical Species in the Atmosphere
 - -- Temporal Characteristics of Sprites
 - -- Spectral Characteristics of Sprites

PROGRESS - CLARIFICATION OF SCIENCE OBJECTIVES Photometry Experiment

- Preliminary Observing Strategy Defined Multiple Observations of Calibration Target Multiple Excursions with Heavy to Complete Overlap
- Preliminary Target Identification (David Sing)
- Prototype Operational Algorithm (David Sing)


PROGRESS - LIGHTNING EXPERIMENT

- Approximate Flux Values Determined: Lightning flux 10⁻⁶/m²/srad at All Wavelengths
- Lightning Detection Algorithm Under Development

PROGRESS - SPRITE EXPERIMENT

- Approximate Flux Values Determined 10-100x10⁻⁶W/m²/srad for sprite light between 660-700nm Lightning is about the same order of magnitude between 660-700nm
- Sprite Detection Method Modified

Lightning and Sprite Fluxes Comparable at 660-700nm Use of Photodiode Array Introduces Geometric Dependence on Detectability

• New Alternate/Additional Dual CCD Algorithm Possibly Use Active Pixel Sensors

PROGRESS - INSTRUMENT DESIGN

- Chose reflector not refractor
 5 degree by 5 degree FOV possible
 Observations at Edge of FOV Still Allow 5km Resolution
- Preliminary Ray Diagram Generated
- Preliminary Spot Diagram Generated
- Preliminary Radiometry Calculations Completed

Combined Lightning and Sprite Power at CCD (for 20 µm pixels) approx. 2 x 10⁻¹⁴ W

D* ("Detectability") for CCD with SNR approximately equal to 100 is 10^{13} (compared with typical 10^{11} to 10^{14})

- Flip Mirror Replaced by (Flip) 50/50 Beam Splitter
- Determined Band Pass for Narrow Band Filter for Sprite Detection
- Cylindrical Lens Introduced for New Sprite Detection Algorithm
- Selected 512 x 1024 CCD Array with Virtual Shuttering
- Two Binning Modes -- High and Low Resolution
- Added Aperture Wheel for Photometry Experiment
- Instrument Prototype Radiometry Program (Mike Hay)|

INSTRUMENT PROTOTYPE RADIOMETRY PROGRAM

An Input File Contains Optical Transmission Values for Vaious Components:

Optical	Transmis	sion Variables for the Student Satellite Project \mid
0.95	*	primary mirror
0.95	*	secondary mirror
0.95	*	fold mirror
0.91	*	photometry lens
0.90	*	photometry filter wheel
0.88	*	sprite array lens
0.87	*	sprite filter wheel
20/80	*	flip beam splitter (reflection/transmission)
20/80	*	sprite beam splitter
50/50	*	communications beam splitter

PROGRESS - ALL EXPERIMENTS

- Lab Space at Remote Sensing Labs
- Optical Table at Remote Sensing Labs (Dr. Bill Wing, STI Team)
- Prototype Under Construction

8-inch F10 Schmidt Cassegrain with 0.5 degree FOV

- Data and Command Handling Protocols Under Development
 - -- Details Of Electronics Still in Flux
 - -- We will have our own CPU (At least one probably several)
 - -- Data Rate
 - -- Science Instrument Command Format
 - -- Science Status Information (Housekeeping) Format
 - -- Science Data Command Format
 - -- Typical Format
 - Sync Byte
 - Byte Count
 - Command/Status/Data ID Byte
 - CommandStatus/Data Bytes
 - Check Byte
 - Byte Count

PROGRESS - ALL EXPERIMENTS (CONT')

- Electrical Characteristic Definitions Under Development
 - -- Max Power Ripple and Transient Requirements
 - -- Max/Min Voltages and Tolerances
 - -- Probably 2 to 3 buses : +/- 5, 12, 28 volts)
 - -- Max Energy Usage
 - -- Max Current Requirements (approx 10 Amps)
 - -- Rise/Fall Times
 - -- Max/Min Impedance
 - -- Max Capacitance

PROGRESS - FUNDING & SUPPORT FOR PROTOTYPE

- Evergreen Airfield
 - -- Raw Materials
 - -- Machining
 - -- Expertise
 - -- Flight Testing
- Burr-Brown
 - -- Electronic Components
 - -- Operational Amplifiers
 - -- A-to-D, D-to-A Converters
 - -- CCD Signal Processor
 - -- Photodiodes
 - -- Voltage and Current Regulators
- Research Corporation (Photometry Sub-Team)
 - -- \$5000
- UA Remote Sensing Laboratory (Kurt Thome)
 - --~\$2000
 - -- Laboratory Space
 - -- Equipment

PLANNED FIELD TESTING

- Lab Test Phase 1
- Lab Test Phase 2
- Kitt Peak/Mount Bigelow Observations of Thunderstorms
- Yucca Ridge Colorado Sprite Observation/Verification
- Flight Test

ISSUES TO RESOLVE - INSTRUMENT DESIGN

- Reflector Design vs. Optical Speed to Maintain 5 Degree By 5 Degree FOV
- Fold Mirror (Would Require Dedicated Processor and Increased Electro-Mechanical Complexity)

ISSUES TO RESOLVE - LIGHTNING EXPERIMENT

• Refine Lightning Detailed Detection Algorithm Perform Daytime Detection?

ISSUES TO RESOLVE - SPRITE EXPERIMENT

- Refine Sprite Detailed Detection Algorithm Daytime Detection?
 - Detection in Moonlight?
- Will Dayglow, Nightglow, Auroras Cause False Sprite Detections?
- Maybe Replace Cylinder Lens with Semi-Spherical Lens?

ISSUES TO RESOLVE - PHOTOMETRY EXPERIMENT

- Optimize Target list
- Quantify Accuracy and Calibration
- Verify Scientific Merit
- Can the CCD be Used for Tracking & Pointing Correction?
 - -- Slewing Accuracy & Stability of Satellite
 - -- Common Data/Command Area Needed with Both TTC and Science Having Input Access
- Overfill or Underfill Photodiode?

ADMINISTRATIVE ISSUES

- Opinion: Team Leader Meetings Should be Used for Technical Exchanges
 - -- Many Administrative Matters Can Be Done By E-Mail
 - -- Most Technical Matters Should Be Addressed By Group Interaction at this stage
- Semester Reviews At Beginning of Semester Rather Than End
- Tech Notes Will Complete over Summer as Information Becomes Available
- Meteorology Short Courses May Be Offer In June
- Machine Shop Training Needed