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1. Document Overview

This document described the kinematic analysis of the ground tracking control mode. During
the ground tracking maneuver, the telescope has to be pointed at a ground station on Earth.
The desired attitude, angular velocity and angular acceleration are derived for this maneuver.

Algorithms for implementing the equations are given at the end.

2. Requirements

3. Descriptions/Designs/Discussion

Nomenclature

Xg :vector from centroid of Earth to ground station
AP :transformation matrix from frame a to frame b
wgq sidereal rotation of the Earth

AN :geocentric latitude ground station

AE :geocentric longitude ground station

Ry :distance from Earth centroid to ground station

L :inclination of the orbit

Rg :radius of the orbit

w :argument of perigee

Q :angle of right ascension

v :true anomaly

Xg :vector from Earth centroid to satellite

X /s :displacement from the satellite to the ground station
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ug,s :unit vector directed from the satellite to the ground station
wy  :desired angular velocity of the satellite
ts :sampling time

3.1 Notation and Coordinate Frames

This section introduces the notation and symbols used in this technote. Furthermore all
reference frames used in this paper will be defined.

3.1.1 Notation

Vectors will be denoted by lowercase boldface letters. Matrices will be denoted by uppercase
boldface letters. Scalars are denoted by italic lowercase letters. For example Ax = Ax means
that the matrix A multiplied by vector x equals a scalar A times the same vector x.

In general, let & denote the cross-product matriz of vector a, the 3 x 3 skew-symmetric
matrix such that ab = a x b for any vector b. Algebraically, a is given by

0 —as a9
a=| as 0 —-a (1)
—as ay 0

The coordinate frame of reference is denoted by a superscript. For example, the vector
xE¢ is given in coordinates of the ECI-frame.

3.1.2 Definition of Reference Frames

The following reference frames are used in this technote.

3.1.2.1 Spacecraft Frame (SCF)

The origin of the spacecraft fixed SCF frame is at the center of mass of the satellite. The
z-axis points along the bore-sight of the telescope axis. The x-axis is perpendicular to the
z-axis and points to the center of the first side panel. The y-axis is chosen such that a
right-hand orthonormal reference frame is formed. The reference frame is shown in Fig. 1.

3.1.2.2 Desired Frame (D)

The origin of the desired frame is at the center of mass of the satellite. The axes of the
frame form an orthonormal triplet and represent the desired attitude of the satellite. The
spacecraft frame and the desired frame are aligned if the attitude error is zero.

3.1.2.3 Earth-Centered Inertial Frame (ECI)

The ECI frame is fixed with respect to the stars. Its origin is the center of the earth. The
z axis points at the celestial pole. The x axis points toward the mean equinox; that is, the
direction from the earth to the sun on the first day of spring. The y axis is chosen such
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Figure 1: Geometry of the UASat and the spacecraft fixed frame

that a right-hand orthonormal reference frame is formed. This frame is shown in Panel A of
Fig. 2.

3.1.2.4 FEarth-Fized Frame (ECF)

The ECF frame is fixed with respect to the Earth. Its origin is the center of the earth. The
z axis points at the celestial pole. The x axis runs through the prime meridian. The y axis is
chosen such that a right-hand orthonormal reference frame is formed. This frame is shown
in Panel A of Fig. 2.

3.1.2.5 Orbit Frame (ORB)

Define an orbit coordinate system with its center at the Earth centroid as follows. Let the
z-axis correspond to the orbit normal, Let the x-axis be in the direction from the Earth
centroid to the ascending node. The y-axis follows from the right hand rule. This frame is
shown in Panel B of Fig. 2.

3.2 Desired attitude

During the ground tracking maneuver the telescope must be pointing at a ground station
on Earth. Therefore the direction from the satellite to the ground station must be known
in order to specify a desired attitude. We will first find expression for the location of the
ground station and the satellite in ECI coordinates. These expression are subtracted of each
other to get the direction.

The location of the ground station in ECI coordinates is

x5 = A’ @
where Agglf is the transformation matrix from ECF to ECI coordinates.

Let Ag and Ay be the longitude and geocentric latitude of the ground station respec-
tively. Let Rg be the distance from the Earth centroid to the the ground station. Then the
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Figure 2: Geometry of ground station on Earth and a circular orbit.

coordinates of the ground station are (see Fig. 2.a)

COS AN COS AR
x‘gf = Rg | cos Axsin Ag (3)
sin )\N

If we assume that the Earth is round with the geocentric latitude equal to geodetic latitude,
the coordinates of the ground station in Tucson are Ay = 32.19581°, A\g = —110.89171° and
Ry = 6,378.137km (equatorial radius). See [1] for an introduction to the geometry of the
Earth.

Assume a circular orbit with radius Rg and inclination ¢. For a circular orbit is the
argument of perigee, w, not uniquely defined and can be set to zero: w = 0. Define an
orbit coordinate system with its center at the Earth centroid as follows. Let the z-axis
correspond to the orbit normal, Let the x-axis be in the direction from the Earth centroid
to the ascending node. The y-axis follows from the right hand rule. The orbit and the frame
are shown in Panel b of Fig. 2. The satellite orbits in the x-y plane of this frame as

cosv
x™® = Rg [sinv (4)
0

where v is the true anomaly. The location of the satellite in ECI coordinates is given by
X = Asxg® 5)
where the transformation matrix from orbit frame to ECI coordinates is

_ [cos Q —sin( O-I [1 0 0 -| [cos Q —sinQcost sin{lsing -|
o= 1sinQ cosQ 0| |0 cost —sine| = |sinQ cosQcost —cosQsine| (6)
[ 0 0 1J [0 sint cost J [ 0 sin ¢ COS ¢ J

where 2 is the angle of right ascension of the orbit.



Let xg be the displacement from the satellite to the ground station
xifls = x§ — xf (7)

The unit vector directed from the satellite to the ground station is

eci __ eci
Ug/s ”xG/S” XG/s (8)
where ||x s|| is the Euclidean norm of vector xg g.

The desired attitude should be such that the telescope points toward the ground station.
Therefore, the third column of A is determined by ug /s The first two column are arbitrary
as rotations about the telescope axis are not important; A, is not completely specified by
the problem.

The desired attitude can be determined as follows. Given initial time ¢, let A4(to) be any
orthonormal matrix such that the third column is ug (o). The desired A4(t) is determined
by integrating the angular velocity:

t
AF() = [ GFAF()r + AT (1) (9
to
This is only necessary because A 4(¢) is not completely specified by the problem. An suitable
desired angular velocity wS® will be derived in Sec. 3.3.
In practice, the integration has to be performed only for the first column of A,. The
third column follows from the unit vector ug /s and the second column is determined by the

cross product of the third and first column e, 4 = &; e, 4. Writing (9) only for the first
column

t
eS8 (1) = / B ()T + €% (1) (10)
to

In practice this integration will be performed numerically. An update function will be called
each ts seconds to propagate the unit vector using forward Euler integration. The Euler
integration rule is

e ((k + 1)t,) = [Is + @ (kt, )t | €5 (kt,) (11)

3.3 Desired angular velocity

The desired angular velocity is not uniquely specified for this problem. A particular choice
with no rotation component about ug g is

wﬁci = ﬁg}sﬁg}s (12)

To compute this angular velocity one needs to compute the time derivative of the unit vector
ug/s- The rate of change of the unit vector follows by differentiating (8) with respect to time

. 1 . 1 d ;
s = % —(”X ”)xea (13)
G/S ||XG/S|| G/S ||XG/S||2 dt G/S G/S



The derivative of the Euclidean norm ||x4 /s” can be computed by differentiating the square
of the norm and then dividing both side by 2[[xq |

d d d eci eci eci eci
2”"(;/5”%(”"(;/5”) = %(HXG/S“ )= dt ((XG/S)tXG/S) = 2(XG/S)tXG/S = (14)

d 1 eci \teci
dt(” G/S”) m(st) XaG/s (15)
Substitution of this result into (13) and using (8) yields
- eci 1 i i i
ugs = m( — ugls(ul)s)")xE)s (16)

Note that ug /s is perpendicular to ug /s The velocity vector XEC}S can be found by differen-
tiating (2) and (5). In particular, for a fixed ground station it follows from (2) that

x5 = Attt = oA = ofixg (17)
where w&i = [0 0 27/86, 164] is the sidereal rotation of the Earth. Similarly, assuming
that Q0 and ¢ vary only very slowly in time such that the matrix Ay can be considered
constant, it follows from (5) that

—smv
¢ = A% %I = A% Rsvv | cosv (18)
0

where v is the orbit rate in rad/s. The velocity vector x&c}s is the difference of (17) and (18)

—sinv

x‘ac}s = xS — A Rgpv | cosv (19)
= 0 -
From (12), (16), (19) and using that any vector a yields aa = 0, it follows that
i 1 ~ €C1 1
Wit = R (20)
”xc;/s”

3.4 Desired Angular Acceleration

The desired angular acceleration follows by differentiating (20) with respect to time

-1 1 e
wec1 _ (“ ”)uem Xec1 @ ec1 ﬁem - eci (21)
d || G/s||2dt G/S G/S G/S ||X(;/s|| G/S G/S ||X(;/s|| G/S G/S
Using ab = —ba and substitution of (15), (16) yields

eci __ 1 ( eci )t eci € eci 1 seci (I

wq Xa/s) Xg/sXag/sUg/s — WXG/S uG/S (u‘éf}s)t)xg}s
G/S

||XG/s I
1
+ ﬁec1 - eci (22)
”xG/s ” G/S G/S



Using aa = 0 and (8) one obtains

wy = ITSTES ig}su&c}s (“Ec;s)txéc;s + 713%:}55'(&0}5 (23)
”xc;/s“ ”Xc;/s”

; ~eci . eci eci : : ; :
Assuming that @gy, x&', A, Rs, and v are constant or slowly time varying, the acceleration

follows from differentiation of (19) with respect to time

. . cosv
x&)s = AfRst” [sinv (24)
0
Using this result and (20) it follows from (23) that
. -2 . . . . . cosv
wgm = ||X || wga(ug}s)t}-(ec;c;s + ||X ” ﬁg}SAE(;})Rsﬂz sin v (25)
G/s G/s 0

3.5 Algorithms

The desired attitude, angular velocity and angular acceleration can be computed using the
following algorithms. The algorithm initialize should be called only once when the ground
tracking mode is entered. After initialization, the algorithm update should be called each ¢
seconds.

Algorithm 1 initialize

Input: A% A

sc ecf’

Output: AT, w§

ecf ect -
Xa' Agrb; v, v, RS; Wsid,

1. Compute the unit vector uff/is in the direction from the satellite to the ground station.

(a) compute x™ using (4)

(b) compute x&" using (5)
c) compute x%' using (2
G

ect

(d) compute x&)s using (7)

(e) compute ||xq 5|l = 4 /(x&)s)'%x&]s
(f) compute ugf/is using (8)
2. Compute the desired orientation A5

(a) Set the third column equal to the unit vector towards the ground station e§y(k +
1) = ug;c/is

Sect nect eci __ pect ect __ pect
(b) If 855e5:. # O then set e, = ef, else set ey = e5y,.



(c) Make this vector orthogonal to the third column by subtracting the component in
the direction of the third column vector e$%y = €5 — (e5y) e sesy. Normalize the
result to obtain a unit vector again.

(d) The second column follows from taking the cross product between the third and
first columns €5y = €54e5s
8. Compute the desired angular velocity w&*

o €CL

(a) compute x&)s using (19)
(b) compute w&* using (20)

Algorithm 2 wupdate

. vecf Aeci o, -
Input' AZE}; Xa AZ%;} v, Vv, RS; Wsid,

Output: A% W W&

1. Compute the unit vector ugjs in the direction from the satellite to the ground station.

(a) compute x™° using (4)

(b) compute x&" using (5)

(c) compute x%' using (2)

ect

(d) compute x5 using (7)

(e) compute ||Xc;/s|| = (ngs)txg:;s

(f) compute ugjs using (8)
2. Compute the desired orientation A"
(a) Set the third column equal to the unit vector towards the ground station efiffi(k +
1) = uf;c/is
(b) Compute the new value of the first column e$y(k + 1) using (11) with the value
of the desired angular velocity we'(k) computed in the previous iteration.

(c) Make this vector orthogonal to the third column by subtracting the component in
the direction of the third column vector e’y = €5 — (e5y) e sesy. Normalize the
result to obtain a unit vector again.

(d) The second column follows from taking the cross product between the third and
first columns egy = &5 iesy
8. Compute the desired angular velocity w

(a) compute x‘éc/’s using (19)
b) compute w" using (20
d

. compute € aesirea angultar acceileration w USan
4 te the desired angul leration @ 25



4. Lists
5. Interface Requirements and Specifications
6. Current Status

7. Test Plan

8. Concerns and Open Issues

e A perfect spherical Earth is assumed to obtain the ECF coordinates xﬁff of the ground
station in Tucson. The coordinates should be estimated more accurately.

e Dr. Wing of the LCS team mentioned that we should take the finite speed of light into
consideration and therefore point a little ahead. Initial calcultions indicated that this
error will be very small compared the pointing error. The LCS team should analysis
this issue and document it.

9. References
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