
1

Doc. no.: DCH-009

Revision no.: 1.0

Status: Draft

— —
Subject: DCH Software Overview Date: 6/29/98

Written by: Mickey Britt

Reviewed by:
— —
Revision history:

Revision 1.0: Initial Draft
— —

1. Document Overview
The DCH System Kernel is a small software unit responsible for system chores at

boot-up time, and the lowest level of run-time task maintenance and support. This
document does not detail any hardware systems. However, the kernel interacts
directly with hardware and manages higher-level hardware requests; thus, hardware
considerations and design bear directly upon the kernel. This document describes the
specific duties of the DCH kernel, and its interactions with hardware as well other
software modules. The kernel is only one part of the DCH software as a whole.

2. Requirements
The kernel is the innermost foundation for every other Data & Command Handling

software module. Its duty is to boot those modules into memory at startup, maintain a
stable running environment, and serve as an interface for hardware systems. Other
programmers should be able to code DCH algorithms, unconcerned by the
technicalities of the underlying hardware. The microprocessor itself requires the
maintenance of various system data tables in a way that must be handled with
assembly language code.

Generally then, the kernel programmer's job is to write everything that cannot be
written in C, and then link this code to C modules, forming a complete boot-loadable
system.

Specific kernel duties:

— Boot-up chores and board initialization
— Software environment initialization
— Low-level runtime maintenance & hardware interface

2

— Handling of critical software faults

3. Descriptions/Designs/Discussion

4. Lists

5. Interface Requirements and Specifications
The kernel assumes an Intel386 with a coprocessor, in a somewhat ISA compatible

motherboard. ROM issues: All onboard software must be ROM-burned and the
boot-up code must be vectored to by a bootstrap at FFFFFFF0h. The boot-up code
must be above FFFF0000h if the bootstrap is a near jump, or somewhere within the
first megabyte if the bootstrap is far. Of course, there will not be 16 gigabytes of
ROM or RAM, but the chip should be selected when the upper 16 address lines are
high on a memory read. It is important to note that, in general, no memory above the
first megabyte can be accessed unless the CPU is in protected mode (thus the
infamous 1meg DOS limit). The kernel must not be required to access such memory
until fully initialized (i.e., in protected mode, and stabilized).

Protected mode: A real-mode kernel would be far easier to write, but would lack
the processor's 32-bit capabilities and build-in fault protection mechanisms, and its
1meg memory limit would have to circumvented with no small difficulty. The kernel
will run in protected mode. This adds immense complexity, but the system should be
more stable and have better performance.

C code patching: Unless a C compiler meeting certain requirements can be
found, higher-level modules will be written in Borland C, compiled to assembly, and
textually patched up, before a final assemble and link. The compiler would have to
be: 1) ANSI compatible C, 2) 32-bit capable and not restricted to flat mode (i.e. far
calls and data are possible), 3) Able to compile into legible, TASM or MASM 32-bit
Intel assembly code (not gibberish "intermediate" code). I do not believe such a
compiler exists. A special program must be written and maintained, to edit semi-
compiled code so it will ultimately run in the satellite environment. This is just as
ugly as it sounds. C coders will use special nomenclatures to make system calls.
This is still in the works.

6. Current Status
The O/S has so far been developed on a Pentium 90mhz machine. The text patcher

is underway, in Borland C++ for DOS, and partially works. The O/S can enter
protected mode; paging is not really used though it is activated. It can run small
Borland-compiled 32-bit C program (from DOS). This code cannot easily interact
with hardware, or with the kernel for that matter, but it is a big first step. There is
minimal board initialization because the program is not invoked from boot-up, though

3

the O/S is written to be ROM-ized. Interrupts are received and reported on-screen
(and the 8529 interrupt chip is specially setup for this kernel), although only Level 0
can receive interrupts at this time (the C code runs at Level 1, which is less
privileged). As an added bonus, the program returns to DOS when finished, rather
than blinking out and rebooting.

The C program is the start of a simple text-windowing system, which will be
helpful for debugging and testing. Pentium-specific performance stats are queried
and reported, which obviously cannot be used in the final version but will also be
helpful for timing analysis.

7. Test Plan
No specific test plan yet. Since the purpose of the kernel is only to support other

modules, testing of those modules should bring to light faults in the kernel. Errors
tend to cause the system to halt suddenly or become conspicuously unstable, thus
making fault detection relatively simple.

8. Concerns and Open Issues
Nature of hardware/motherboard: The O/S interacts intimately with hardware and

the O/S programmer must know how to program and relevant hardware unit at the
assembly level. If a programmer is not alerted to a change in mother-board design,
the entire satellite is likely to be rendered useless or damaged.

Nonstandard C coding: Other higher-level programmers must understand that they
are not programming under an ordinary environment. A simple "include" statement
will cause the entire package to miscompile, and the offending module may have to
be rewritten. DCH programmers will be writing in a "proprietary" version of C and
must remain in contact with the kernel programmers. These C coders are likely to
become frustrated and feel that the demands are extraordinary, but keep in mind that a
mission-critical system with no BIOS and no hard disk is DRAMATICALLY
different from a home PC. Also, the program to patch up compiled C code must be
maintained.

9. References
1. Shanley, Tom and Don Anderson. (1995) ISA System Architecture.

Reading, Mass.: Addison-Wesley.

